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Abstract

Post hoc power is the retrospective power of an observed effect based on the
sample size and parameter estimates derived from a given data set. Many scientists
recommend using post hoc power as a follow-up analysis, especially if a finding is
nonsignificant. This article presents tables of post hoc power for common t and F
tests. These tables make it explicitly clear that for a given significance level, post hoc
power depends only on the P value and the degrees of freedom. It is hoped that this
article will lead to greater understanding of what post hoc power is—and is not. We
also present a “grand unified formula” for post hoc power based on a reformulation
of the problem, and a discussion of alternative views.
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1 Introduction

Power analysis has received an increasing amount of attention in the social-science
literature (e.g., Cohen, 1988; Bausell and Li, 2002; Murphy and Myors, 2004). Used
prospectively, it is used to determine an adequate sample size for a planned study (see,
for example, Kraemer and Thiemann, 1987); for a stated effect size and significance level
for a statistical test, one finds the sample size for which the power of the test will achieve
a specified value.

Many studies are not planned with such a prospective power calculation, however;
and there is substantial evidence (e.g., Mone et al., 1996; Maxwell, 2004) that many
published studies in the social sciences are under-powered. Perhaps in response to this,
some researchers (e.g., Fagley, 1985; Hallahan and Rosenthal, 1996; Onwuegbuzie and
Leech, 2004) recommend that power be computed retrospectively. There are differing
approaches to retrospective power, but the one of interest in this article is a power
calculation based on the observed value of the effect size, as well as other auxiliary
quantities such as the error standard deviation, while the significance level of the test is



held at a specified value. We will refer to such power calculations as “post hoc power”
(PHP). Advocates of PHP recommend its use especially when a statistically
nonsignificant result is obtained. The thinking here is that such a lack of significance
could be due either to low power or to a truly small effect; if the post hoc power is found
to be high, then the argument is made that the nonsignificance must then be due to a
small effect size.

There is substantial literature, much of it outside of the social sciences (e.g., Goodman
and Berlin, 1994; Zumbo and Hubley, 1998; Levine and Ensom, 2001; Hoenig and
Heisey, 2001), that takes an opposing view to PHP practices. Lenth (2001) points out that
PHP is simply a function of the P value of the test, and thus adds no new information.
Yuan and Maxwell (2005) show that PHP does not necessarily provide an accurate
estimate of true power. Hoenig and Heisey (2001) discuss several misconceptions
connected with retrospective power. Among other things, they demonstrate that when a
test is nonsignificant, then the higher the PHP, the more evidence there is against the null
hypothesis. They also point out that, in lieu of PHP, a correct and effective way to
establish that an effect is small is to use an equivalence test (Schuirmann, 1987).

In this article, we derive and present new tables that directly give exact PHP for all
standard scenarios involving ¢ tests (Section 2) and F tests (Section 3). (The PHP of
certain z tests and x? tests can also be obtained as limiting cases.) All that is needed to
obtain PHP in these settings is the significance level, the P value of the test, and the
degrees of freedom. If one desires a PHP calculation, this is obviously a convenient
resource for obtaining exact power with very little effort; however, the broader goal is to
demonstrate explicitly what PHP is, and what it is not. In Section 4, we present a slight
reformulation of the PHP problem that leads to a “grand unified formula” for post hoc
power that is universal to all tests and is a simple head calculation. The results are
discussed in Section 5, along with possible alternative practices regarding retrospective
power.

2 t tests

Table 1 may be used to obtain the post hoc power (PHP) for most common one-and
two-tailed t tests, when the significance level is « = .05. The only required information
(beyond «) is the P value of the test and the degrees of freedom. Computational details
are provided later in this section; for now, here is an illustration based on an example in
Hallahan and Rosenthal (1996). They discuss the results of a hypothetical study where a
new treatment is tested to see if it improves cognitive functioning of stroke victims.
There are 20 patients in the control group and 20 in the treatment group, and the
observed difference between the groups is .4 standard deviations—somewhat short of a
“medium” effect on the scale proposed by Cohen (1988)—with a P value of .225
(two-sample pooled ¢ test, two-tailed). In this case, we have v = 38 degrees of freedom.
Referring to the bottom half of Table 1 (for 2-sided tests) and linearly interpolating, we
obtain a post hoc power of about .234 (the exact value, using the algorithm used to
produce Table 1, is .2251.) This agrees with the value of .23 reported in the article.

We briefly discuss some patterns in these tables. First, PHP is a decreasing function of
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Table 1: Post hoc power of a t test when the significance level is « = .05. It depends on the
P value, the degrees of freedom v, and whether it is one- or two-tailed. Post hoc power of
a z test may be obtained using the entries for v = oo.

P value of test
Alternative v | 0.001 0.01 0.05 0.1 0.25 0.5 0.75
One-tailed 1| 1.0000 1.0000 0.6767 0.3698 0.1348 0.0500 0.0105
2 | 1.0000 0.9910 0.5996 0.3571 0.1434 0.0500 0.0118
5109995 0.8899 0.5365 0.3565 0.1557 0.0500 0.0112
10 | 0.9860 0.8225 0.5174 0.3573 0.1607 0.0500 0.0107
20 | 0.9627 0.7870 0.5084 0.3578 0.1633 0.0500 0.0105
50 | 0.9420 0.7660 0.5033 0.3580 0.1649 0.0500 0.0103
200 | 0.9300 0.7556 0.5008 0.3582 0.1657 0.0500 0.0102
1000 | 0.9267 0.7529 0.5002 0.3582 0.1659 0.0500 0.0102
oo | 0.9258 0.7522 0.5000 0.3582 0.1659 0.0500 0.0102
Two-tailed 1|1.0000 1.0000 0.6812 0.3797 0.1506 0.0730 0.0542
2 | 1.0000 0.9922 0.6147 0.3731 0.1619 0.0804 0.0562
510999 0.8919 0.5446 0.3727 0.1864 0.0918 0.0589
10 | 0.9844 0.8145 0.5210 0.3744 0.1978 0.0973 0.0602
20 | 0.9553 0.7723 0.5102 0.3754 0.2038 0.1003 0.0609
50 | 0.9290 0.7473 0.5040 0.3761 0.2075 0.1022 0.0614
200 | 0.9137 0.7351 0.5010 0.3764 0.2094 0.1032 0.0616
1000 | 0.9094 0.7318 0.5002 0.3765 0.2099 0.1035 0.0617
oo | 09083 0.7310 0.5000 0.3765 0.2100 0.1035 0.0617

P value, for any number of degrees of freedom and alternative. In general, except for
very small degrees of freedom, the power of a marginally significant test (P = a = .05) is
around one half, with the two-tailed powers generally higher than the one-tailed results.
If the test is significant, the power is higher than .5; and when the test is nonsignificant,
the power is usually less than .5. Thus, it is an empty question whether the PHP is high
when significance is not achieved.

2.1 Derivation of the tables

Consider the null hypothesis Hy : 6 = 6, where 6 is some parameter and 6 is a specified
null value (often zero). We have available an estimator 6, and the ¢ statistic has the form
0 — 0,

= se(@) o

where se(f) is an estimate of the standard error of § when Hy is true. Assume that:

1. Forall 6, § is normally distributed with mean 6; its standard deviation will be
denoted T.



2. Forall 8, v-se(f)?/7* has a x? distribution with v degrees of freedom. The value of
v is known.

3. 0 and se(f) are independent.

These conditions hold for most common ¢-test settings, such as a one-sample test of a
mean, pooled or paired comparisons of two means, and tests of regression coefficients
under standard homogeneity assumptions.

Let us re-write (1) in the form

[(0—0)/7] + [(0—60)/7] _ Z+3
se(f)/t Q/v

t= 2)

where 6 = (60 — 6p) /7. According to the stated assumptions, Z and Q are independent, Z
is standard normal, and Q is x? with v degrees of freedom. This characterizes the
noncentral t distribution with v degrees of freedom and noncentrality parameter J. (See,
for example, Hogg et al., 2005, page 442). The power of the test is then defined as

P(t € Ry, ), where Ry, , is the set of t values for which Hj is rejected, based on the
stated alternative H; and significance level a.

Notice that the form of 6 = (6 — 6y) /T is exactly that of the t statistic, with population
values substituted in place of # and se(f). In calculating PHP, we substitute the observed
values of § and the observed error standard deviation (and thus the observed se(f)) for
their population counterparts; thus, the noncentrality parameter used in PHP is 5= t,
the observed ¢ statistic itself. If one is given only the P value and the degrees of freedom,
the inverse of the t distribution may be used to obtain the observed ¢ statistic (or its
absolute value, in the case of the two-tailed test), hence the noncentrality parameter 5
hence the post hoc power. Table 1 is computed using this process. Computations were
performed in the R statistical package (R Development Core Team, 2006), using its
built-in functions qt and pt (percentiles and cumulative probabilities of the central or
noncentral ¢t distribution).

Post hoc power of certain z tests can be obtained from the limiting case when v — oo.
This can be verified by noting that the z statistic has the same form as (1) with se(f) set to
its known value 7. Then the denominator in (2) reduces to 1. However, keep in mind the
underlying condition in our derivation that the standard error of 8 is T regardless of the
true value of 6; this condition does not hold in z tests involving proportions, because the
standard error of a proportion depends on the value of the proportion itself.

3 F tests

Table 2 provides PHP values for a variety of fixed-effect F tests such as those obtained in
the analysis of linear models with homogeneous-variance assumptions. Given a
significance level of & = .05 (the only case covered in the tables), the only other
information needed to obtain PHP is the P value and the numerator and denominator
degrees of freedom (v1 and v, respectively). For example, suppose that we have data
from an experiment where scores were measured on 40 children randomly assigned to 5
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Table 2: Post hoc power of a fixed-effects F test when the significance level is & = .05.
PHP depends on the P value of the test and the degrees of freedom for the numerator (v7)
and the denominator (v5). Post hoc power of a x? test with v; degrees of freedom may be
obtained using the entries for v, = 0. Post hoc power for v; = 1 may be obtained from
the two-tailed t-test results in Table 1, with v = 15.

P value of test
2] 1 | 0.001 0.01 0.05 0.1 0.25 0.5 0.75
2 1 |1.0000 1.0000 0.6827 0.3829 0.1587 0.0818 0.0593
2| 1.0000 0.9933 0.6326 0.3943 0.1823 0.0963 0.0657
510.9998 0.9157 0.5951 0.4249 0.2320 0.1248 0.0774
10 | 0.9899 0.8527 0.5865 0.4444 0.2615 0.1427 0.0850
20 | 0.9668 0.8166 0.5842 0.4563 0.2794 0.1542 0.0899
50 | 0.9436 0.7949 0.5835 0.4642 0.2913 0.1621 0.0934
200 | 0.9296 0.7843 0.5834 0.4683 0.2976 0.1663 0.0952
1000 | 0.9257 0.7815 0.5834 0.4694 0.2993 0.1675 0.0958
oo | 09247 0.7808 0.5834 0.4697 0.2997 0.1678 0.0959
3 1] 1.0000 1.0000 0.6831 0.3837 0.1607 0.0846 0.0615
2| 1.0000 0.9936 0.6386 0.4015 0.1897 0.1028 0.0708
5109999 0.9266 0.6205 0.4514 0.2555 0.1431 0.0904
10 | 0.9926 0.8747 0.6256 0.4864 0.3006 0.1730 0.1054
20 | 0.9741 0.8454 0.6324 0.5095 0.3309 0.1944 0.1164
50 | 0.9545 0.8281 0.6381 0.5253 0.3521 0.2101 0.1248
200 | 0.9424 0.8198 0.6415 0.5338 0.3636 0.2189 0.1295
1000 | 0.9389 0.8176 0.6425 0.5361 0.3668 0.2213 0.1309
oo | 0.9381 0.8171 0.6427 0.5367 0.3676 0.2220 0.1312
4 1|1.0000 1.0000 0.6832 0.3841 0.1615 0.0859 0.0627
2| 1.0000 0.9938 0.6416 0.4051 0.1934 0.1063 0.0738
5109999 0.9329 0.6363 0.4681 0.2705 0.1552 0.0995
10 | 0.9942 0.8893 0.6528 0.5162 0.3289 0.1957 0.1218
20 | 0.9792 0.8662 0.6683 0.5496 0.3709 0.2272 0.1398
50 | 0.9627 0.8533 0.6804 0.5734 0.4018 0.2517 0.1543
200 | 0.9525 0.8475 0.6874 0.5864 0.4190 0.2660 0.1629
1000 | 0.9495 0.8460 0.6894 0.5900 0.4238 0.2700 0.1654
oo | 09488 0.8456 0.6899 0.5909 0.4250 0.2710 0.1661
10 1|1.0000 1.0000 0.6835 0.3847 0.1629 0.0880 0.0648
2| 1.0000 0.9940 0.6469 0.4117 0.2004 0.1130 0.0799
5109999 0.9463 0.6731 0.5079 0.3071 0.1855 0.1242
10 | 0.9974 0.9266 0.7290 0.6018 0.4140 0.2679 0.1783
20 | 0.9915 0.9256 0.7806 0.6807 0.5111 0.3524 0.2386
50 | 0.9859 0.9310 0.8225 0.7435 0.5947 0.4336 0.3015
200 | 0.9830 0.9359 0.8467 0.7796 0.6457 0.4875 0.3465
1000 | 0.9822 0.9374 0.8534 0.7897 0.6603 0.5037 0.3605
oo | 09821 0.9378 0.8551 0.7922 0.6641 0.5080 0.3642




groups of 8 each, and the groups represent different learning conditions. We ran a
one-way analysis of variance (ANOVA) to test the null hypothesis that there is no
difference among the mean scores of these groups, and it was found that the P value was
about .75. Since the degrees of freedom are (v; = 4, v, = 35), we find in Table 2 that the
PHP is somewhere between .14 and .15.

Table 2 does not cover the case where there is 1 numerator degree of freedom; this is
because an F test with one numerator degree of freedom is equivalent to a two-sided
t test, with > = F. Hence, PHPs for that case can be found by referring to Table 1.

Examining the table broadly, we notice that, all other things being equal, the PHP
increases with the numerator degrees of freedom. Also, as before, PHP is a decreasing
function of the P value. In marginally significant cases (P = .05), the power is greater
than .50, often by quite a bit. There are even cases with P = .1, .25, and even .5 where
PHP exceeds .50. This is evidence of the fact that PHP is positively biased for F tests, as
is shown later in this section.

There is another, quite different, situation where F tests are used to compare two
independent sample variances, or to test a random effect in an ANOVA model. Table 3
provides post-hoc power values for such random-effects F tests (only a right-tailed
alternative is covered). Again, the required information to use the table are the P value
and the degrees of freedom. The last section of the table is for equal degrees of freedom
v1 = Vo, which is the case when we compare the variances of two equal-sized samples.
The values in this table are quite different from those in Table 2. When P = a = .05, the
PHP is exactly .5 whenever v; = v, and greater or less than that when v; > v or v1 < 1.
We do not have the bias issue that we had for fixed effects, because the inputs to the PHP
calculation are in fact two independent unbiased estimates of their respective variances.

3.1 Derivation for the fixed-effects case

Our derivation of the results needed for Table 2 uses an assumption that the F statistic is
a ratio of quadratic forms, such as is the case in linear models. Let y be a random vector
of length n having a multivariate normal distribution with mean ¢ and covariance
matrix X. The F statistic has the form

y Ay / 1

F —
y'Ayy / vo

(3)

where A; and A; are n x n idempotent matrices, v; = rank(A;) = tr(A;), and

vy = rank(A;) = tr(A;). Referring to standard results in linear models (e.g., Hogg et al.,
2005, Sections 9.8-9.9), we can establish that F has a noncentral F distribution provided
that the following conditions hold:

1. AjZA; = 0 (this ensures the numerator and denominator are independent).
2. ' Arp = 0 (i.e., the noncentrality parameter of the denominator is zero).

3. tr(A1X) /vy = tr(AX)/vy. Since the expectation of y'A;y is equal to
W Ajp + tr(A;X), this condition states that the expected mean squares of the
numerator and denominator differ only by A/v;.
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Table 3: Post hoc power of a random-effects F test with a right-tailed alternative, when
the significance level is « = .05. The PHP depends on the P value of the test and the
degrees of freedom for the numerator (v;) and the denominator (v7).

P value of test
2 vy | 0.001 0.01 0.05 0.1 0.25 0.5 0.75
1 1109873 0.8746 0.5000 0.2936 0.1195 0.0500 0.0207
210.9042 0.7069 0.4226 0.2785 0.1154 0.0342 0.0071
510.7236 0.5518 0.3632 0.2581 0.1051 0.0166 0.0006
10 | 0.6376 0.4981 0.3409 0.2471 0.0981 0.0098 0.0000
20 | 0.5939 0.4720 0.3293 0.2406 0.0936 0.0065 0.0000
50 | 0.5682 0.4567 0.3221 0.2364 0.0906 0.0047 0.0000
200 | 0.5556 0.4492 0.3185 0.2342 0.0890 0.0039 0.0000
1000 | 0.5522 0.4472 0.3176 0.2336 0.0885 0.0037 0.0000
oo | 0.5514 0.4467 0.3173 0.2334 0.0884 0.0037 0.0000
2 1109996 09623 0.5774 0.3322 0.1358 0.0612 0.0312
2109813 0.8390 0.5000 0.3214 0.1364 0.0500 0.0172
510.8597 0.6691 0.4312 0.3029 0.1318 0.0333 0.0046
10 | 0.7649 0.5973 0.4019 0.2904 0.1259 0.0243 0.0013
20 | 0.7083 0.5599 0.3855 0.2821 0.1213 0.0190 0.0004
50 | 0.6724 0.5371 0.3751 0.2764 0.1178 0.0156 0.0001
200 | 0.6542 0.5256 0.3697 0.2733 0.1159 0.0139 0.0000
1000 | 0.6493 0.5225 0.3682 0.2725 0.1154 0.0134 0.0000
oo | 0.6481 0.5218 0.3679 0.2723 0.1152 0.0133 0.0000
5 1| 1.0000 0.9959 0.6368 0.3608 0.1475 0.0688 0.0384
2109995 0.9389 0.5688 0.3562 0.1516 0.0620 0.0274
5109630 0.7926 0.5000 0.3433 0.1529 0.0500 0.0135
10 | 0.8915 0.7085 0.4651 0.3309 0.1492 0.0412 0.0069
20 | 0.8295 0.6572 0.4430 0.3210 0.1450 0.0347 0.0036
50 | 0.7823 0.6228 0.4275 0.3132 0.1411 0.0299 0.0018
200 | 0.7557 0.6043 0.4189 0.3086 0.1387 0.0271 0.0011
1000 | 0.7483 0.5993 0.4165 0.3072 0.1379 0.0263 0.0010
oo | 0.7464 0.5980 0.4159 0.3069 0.1378 0.0261 0.0009
1 =1 1109873 0.8746 0.5000 0.2936 0.1195 0.0500 0.0208
2109813 0.8390 0.5000 0.3214 0.1364 0.0500 0.0172
5109630 0.7926 0.5000 0.3433 0.1529 0.0500 0.0135
10 | 0.9480 0.7728 0.5000 0.3509 0.1593 0.0500 0.0119
20 | 0.9378 0.7626 0.5000 0.3546 0.1626 0.0500 0.0111
50 | 0.9308 0.7564 0.5000 0.3568 0.1646 0.0500 0.0105
200 | 0.9271 0.7533 0.5000 0.3578 0.1656 0.0500 0.0103
1000 | 0.9261 0.7524 0.5000 0.3581 0.1659 0.0500 0.0102




While the elements of X are assumed unknown, we assume that enough is known about
its structure (e.g., diagonal or compound-symmetric) that these conditions can be
verified.

The distribution of F has degrees of freedom (v1, 12) and noncentrality parameter
A = W A1/ 72, where T2 = tr(A,X) /1,, the expected value of the denominator of F. The
hypotheses under test are Hy : A = 0 versus H; : A > 0. The power of the test is the
probability that this noncentral F random variable exceeds the (1 — a)th quantile of the
central F distribution with (v4,v5) d.f. For post hoc power, we would use the observed
value of the denominator as an estimate of 72; and estimate u'A1u by y'A1y. Thus, the
estimated noncentrality parameter for PHP is

/
A A
1 y A1y

:]/-F 4
VALY /) 1 4)

Given 11, 15, and the P value, we can work backwards to find the value of F, then obtain
A and the post hoc power. Table 2 is computed using this process, using the R functions
qf and pf (R Development Core Team, 2006).

Note that we can use the mean of the noncentral F distribution to show that the
expectation of A s 1/21/32 (A +v1) when v, > 2. This shows why the PHPs in Table 2 can be
so exaggerated, especially when v is large or P is large (suggesting A is small). It also
disproves a statement made in Onwuegbuzie and Leech (2004) that “observed effect size

. [is] a positively biased but consistent estimate of the effect”; it is not consistent. One
may make the simple adjustment A = (v; —2)A /v, — v; to obtain an unbiased estimate
of A, and using this (when it is nonnegative) in place of A substantially reduces the PHP;
for example, the “bias-corrected” PHP for v; = 10, v, = 50, and P = .25is .1290,
compared with the value of .5947 in Table 2. Taylor and Muller (1996) provides more
detailed and sophisticated approaches to dealing with bias in estimating noncentrality
and power.

3.2 Derivation for the random-effects case

Derivation of results for the random-effects case is relatively simple. The F statistic has
the form F = s?/ s%, where 51 and s, are independent random variables such that for
i=1,2, visg / 0'1-% has a x? distribution with v; d.f. We test H : (712 = (722 against some
alternative; Table 3 only considers the right-tailed alternative Hj : 07 > 03. It is clear that
in the general case, (¢7/03)F has a central F distribution with (v, v2) d.f. The power of
the test is the probability that this multiple of an F random variable exceeds the (1 — «)
quantile of the F distribution. To compute power retrospectively, we simply use the
observed ratio S% / s% = [ as an estimate of the ratio 012 / (722. As in the fixed-effects case,
we can work backwards from the P value to find the observed F value. Again, we used
the R functions qf and pf to compute Table 3.



4 A grand unified formula for post hoc power

Recall that PHP is based on pre-specified hypotheses and «, but that all other parameters
are estimated from the data. Going back to basics, the power of a test is the probability of
rejecting the null hypothesis in favor of the alternative, computed at a specified effect
size. Given the same information used in PHP calculations, we can write

1 if Hy was rejected

PHP = P(Reject Hy | available data) = { ()

0 otherwise

That is, when we compute post hoc power, it makes sense to use all the information
available. The PHP computations described in the literature and earlier in this article all
ignore an essential known fact—the outcome of the test. Certainly, (5) is easy to
remember and can be applied universally to all post-hoc-power problems: a grand
unified formula (GUF) of astonishing simplicity!

5 Discussion

The tables in this article demonstrate clearly that PHP is just a re-expression of the

P value; and in fact, once one gets past 20 degrees of freedom or so (for the
denominator), PHP does not even depend much on sample size for a given type of test.
Thus, as a retrospective measure of the results of the current study, PHP is just
elaboration, not new information.

It is of course possible to also consider the meaning of PHP as a prospective measure.
That is, contemplate a future study exactly like the one we just did, with the same
sample size; what is the probability of achieving statistical significance if the same effect
size is observed? (This is the only situation I can think of where PHP would make sense
and the GUF would not.)

If the current study resulted in statistical significance, then the results in this article
show that the PHP is fairly high, indicating a good chance of achieving significance if the
study is repeated; such might add credibility to our current results—but only if we
actually conduct that new study.

It is in the case of a nonsignificant result that many authors recommend that PHP be
calculated. We have shown that PHP tends to be low in this situation (at least, after
correcting for bias in estimating the noncentrality parameter); and, viewed
prospectively, that suggests that a future study of identical design and sample size is
also likely to again result in nonsignificance. Moreover, don’t forget that, especially in
the fixed-effects F case, PHP over-estimates the power of that future study.

The above two paragraphs can be summarized as follows: If you were to repeat the
same study, you'd probably get the same result you got this time—with some variation,
of course. I think we already knew that; PHP doesn’t help us understand that point any
more clearly than we already did. Thus, it does not make sense prospectively, either. The
bottom line is that PHP does not tell us anything we don’t already know.

Researchers who advocate retrospective power calculations are motivated by the
finest of objectives. Onwuegbuzie and Leech (2004), for example, make a number of

9



points about considering the practical importance of research results and not just
whether they are statistically significant, and reinforce the recommendations in the APA
publication manual (American Psychological Association, 2001, page 25) that an index of
effect size should accompany the results of tests. While these are valid and important
points, post hoc power does not address them in a meaningful way because, as we have
demonstrated, the P value, observed effect size, and PHP are all confounded.

5.1 Power is inherently prospective

Neither PHP nor my GUF alternative add information to an analysis. Given that we
have all of the information to be had from the current study, it only makes sense to focus
attention on what to do in future work.

I believe that the debate over post hoc power has its roots in confusion over the
foundations of hypothesis testing. Underlying that is the word “hypothesis.” A
hypothesis is, well, hypothetical; and it makes sense for things to be hypothetical only
when you have yet to collect data.

When we learn hypothesis-testing methods, we are usually taught that the hypotheses
should be formulated before collecting the data (or at least before looking at them), and
also that the significance level « should be specified in advance. If we make any of those
things up as we go along, then the analysis is only exploratory and we cannot use it to
establish definitive scientific findings; that would have to be done in a future study. I
believe that these points are well understood by most social scientists.

The ideas that hypotheses are hypothetical, and that they, and the value of «, should
be formulated independently of the data, are thoroughly prospective in nature. When
power analysis is done, it makes sense that effect size should also be defined
prospectively. That indeed is the view taken even by some researchers who advocate
retrospective power; for example, Fagley (1985) emphasizes basing it on an effect of
meaningful size, rather than the observed effect size. However, even if retrospective
power is computed using a meaningful effect size, it is still based on the sample size of
the current study, rather than on focusing prospectively on what could be accomplished
with a follow-up study of a possibly different sample size. Again, as explained by
Hoenig and Heisey (2001), the appropriate way to judge the observed effect size relative
to a meaningful one is to perform an equivalence test.

5.2 Effect-size considerations

Another brand of retrospective power is obtained by using the observed effect size, but
considering the power of a future study with possibly a different sample size. This is a
prospective view, but it falls in the category of “asterisk hunting” (Lenth, 2001); that is,
we are setting a goal of collecting enough data to achieve statistical significance, without
first making a judgment as to whether or not the observed effect size is of practical
importance.

This is also the implicit goal of Onwuegbuzie and Leech (2004) and many other
authors who emphasize identifying the expected effect size for use in power calculations.
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Onwuegbuzie and Leech state (page 209, and citing several other references) that “a
statistically nonsignificant finding can be assessed more appropriately by using the
observed (true) effect” in a power calculation. I believe this to be highly misleading, as
well as completely contrary to other views expressed in the same reference. First of all,
the observed effect is not the true effect; it is only an estimate thereof. Second, if it is
statistically nonsignificant, then the true effect is plausibly equal to zero; so either the
calculated power is irrelevant, or we are so unsure of the true effect size that we can
hardly rely on its value.

5.3 Conclusions

Researchers owe it to themselves to take a thoroughly prospective view of any power
calculation. That involves establishing a meaningful effect size based not on anticipated
results, but on scientific goals—a target effect size that is likely to be detected if it exists,
and not so likely to be detected if it doesn’t. Then power the study accordingly. That is
the scientific way of connecting statistical significance with practical significance. Once
the study is completed, power calculations do not inform us in any way as to the
conclusions of the present study.
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A R code used in calculating the tables

This appendix presents the R functions that were used to calculate the tables. Note that
these functions can gracefully handle infinite degrees of freedom (R value of Inf).

A.1 Post hoc power for t tests

Arguments are the observed P value, degrees of freedom, a boolean flag for whether it is
two-tailed (true) or one-tailed (false), and the significance level of the test.

retro.t = function(P, df=50, two.tailed=TRUE, alpha=.05) {
if (two.tailed) {
delta = qt(1 - P/2, df)
cv = qt(1 - alpha/2, df)
power = 1 - pt(cv, df, delta) + pt(-cv, df, delta)
}
else {
delta = qt(1 - P, df)
cv = qt(1 - alpha, df)
power = 1 - pt(cv, df, delta)
}
power

b

A.2 Post hoc power for fixed-effects F tests

Arguments are the observed P value, numerator and denominator degrees of freedom,
and the significance level of the test.

retro.F = function(P, numdf=1, dendf=50, alpha=.05) {
lambda = numdf * qf(1 - P, numdf, dendf)
cv = qf (1 - alpha, numdf, dendf)
1 - pf(cv, numdf, dendf, lambda)

+

A.3 Post hoc power for random-effects F tests
Arguments are the same as for the fixed-effects case.

retro.rF = function(P, numdf=1, dendf=50, alpha=.05) {
ratio = qf(1 - P, numdf, dendf)
cv = qf (1 - alpha, numdf, dendf)
1 - pf(cv / ratio, numdf, dendf)

}
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